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An electrostatic method to determine variable atom parameters in ionic crystals with experimentally 
determined unit cell parameters and space group is proposed. The atom parameters are usually chosen 
to give the maximum Madelung constant. However, when these atom parameters generate interatomic 
distances at least one of which is less than a critical distance, which comes from repulsion between 
atoms, the atom parameters corresponding to that distance are assigned. Applicability was examined 
for three cases: Ti02 (rutile), UC&, and /3-RbrGeF,. Agreement between the atom parameters of this 
method and of literature was good. Some discussion is presented on the basis of this method. In ionic 
crystals, the atoms with variable parameters are set first using the geometrical arrangement which is 
the most stable in an electrostatic sense, and then “real” distances are fixed under the interaction of 
repulsive forces. 0 1987 Academic Press. Inc. 

Introduction 

In ionic crystals, the largest contribution 
to the cohesive energy is known to be given 
by the Madelung energy, which is character- 
ized by the Madelung constant, a geometri- 
cal property of the crystal structure. The 
role of the Madelung constant for under- 
standing various crystal structures has been 
studied extensively by Hoppe (I). He cal- 
culated the constants for a variety of binary 
and ternary halides and also for some ox- 
ides, and discussed the Madelung energy of 
each structure type in combination with the 
ionic charge quotient, Q. He also showed 
that the chlorine atom parameter in cubic 
K2PtC1, is a measure of complex nature of 
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PtCli- in the crystal and that it is related 
functionally to the Madelung constant. 

A well known example which shows the 
usefulness of the Madelung energy is the 
work by de Boer et al. (2) where they ex- 
plained the relative stability of normal and 
inverse spinels by means of Madelung en- 
ergy change with order parameter of the 
two forms although the other theories 
which invoke d-orbital-based crystal field 
energy (3, 4) or pseudo-potential orbital ra- 
dii (5) have appeared subsequently. 

Most crystal structures have variable 
atom parameters. The relation between the 
Madelung constant and atom parameters 
was studied many years ago for rhombohe- 
dral corundum, A&O3 (6), in which the ap- 
proximation that each aluminum atom is 
equidistant from six oxygen atoms was 
made. More recently, Baur (7) calculated 
the Madelung constant of TiOz (t-utile) as a 
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function of c/a and an atom parameter, x, 
and obtained lattice energies of nine rutile- 
type compounds using Born model calcula- 
tion in combination with nonelectrostatic 
Lennard-Jones-type repulsive potentials. 
Meyer and Hoppe (8) took a somewhat dif- 
ferent approach. They showed that the 
variable atom parameter, L, of NaNbOz 
(hexagonal, P6&72mc, LiNbOz type) was 
able to be obtained as the point which gives 
a minimum difference between MAPLE 
(NaNbO*) and (MAPLE(Na20) + MAPLE 
(Nb203))/2 on the basis of the additivity of 
MAPLE, i.e., Madelung Part of Lattice En- 
ergy (1, 9). 

The variation of the Madelung constant 
with atom parameter, U, for Y203 which has 
a bixbyite-type structure (cubic, space 
group Za3, Ti) has been examined by v. 
Mertens and Zemann (20). In this struc- 
ture, 8 yttrium atoms, Y 1, are in 8(6) posi- 
tion with (f, a, a), etc., and 24 yttrium at- 
oms, Y2, in 24(d) position with (u, 0, a), 
etc., and 48 oxygen atoms in 48(e) position 
with (x, y, z), etc. They set the condition 
that all the Y-O distances were equal and 
constant (2.2834 A). This does not hold in 
the real crystal, but the condition above di- 
minishes the number of variables from four 
to one; i.e., U. Meanwhile, the atom param- 
eters x, y, and z as well as lattice parameter, 
ao, vary as a function of U. According to 
them, the u value giving the maximum 
Madelung constant corresponds very well 
to the observed structure (U = -0.0328) 
(11). 

It is significant that the results of v. Mer- 
tens and Zemann (20) could explain the 
atom parameter without using sophisticated 
minimization processes in the lattice energy 
calculations. However, their conditions im- 
posed on the Y-O interatomic distances ap- 
pear to be too strong, and result in u chang- 
ing systematically with the lattice 
parameter. 

It is desirable to exploit a simple method 
which enables us to determine the variable 

atom parameters in ionic crystals. Actually 
in some cases, e.g., for highly radioactive 
specimens, while the crystal system, space 
group, and lattice parameters can be deter- 
mined by either X-ray or neutron diffrac- 
tion analysis, the intensity data collected in 
the diffraction experiments will not be ac- 
curate enough to determine the atom pa- 
rameters. The aim of the present paper is to 
establish the possibility of determining the 
variable atom parameters by simple electro- 
static calculations that find the maximum 
Madelung constant. 

Description of the Method 

The variable atom parameters will be de- 
termined as the quantities which satisfy the 
following two conditions: (1) At the posi- 
tion of the “true” atom parameter, the 
Madelung constant as a function of the pa- 
rameter takes its maximum value. (2) The 
condition above cannot be attained if it re- 
quires that the nearest ion-ion separations 
in the crystal are less than certain critical 
values which arise from repulsive interac- 
tions between the ions. In this case, the 
atom parameter is taken as the value which 
gives the largest Madelung constant under 
the restriction that the interatomic dis- 
tances are equal to or larger than the critical 
lengths which we will propose in the follow- 
ing sections. Observed crystal symmetry 
and unit cell parameters are of course main- 
tained. 

The actual procedure which will be the 
most common is as follows: One first starts 
from the reasonably near or “ideal” atom 
parameter, and calculates the Madelung 
constants for several varying values of the 
atom parameter. The parameter value 
which gives the maximum constant is what 
we want to determine if the atomic separa- 
tions are not less than the critical values. 
Therefore, it is better to calculate the near- 
est interatomic separations in the crystal 
for every value of that parameter to check 
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whether the separations are larger than the 
critical values. If less, one takes the param- 
eter value corresponding to the largest 
Madelung constant under the condition that 
the separations are equal to or larger than 
those critical values. For crystals with two 
variable parameters, one should construct a 
two-dimensional matrix of Madelung con- 
stants for these parameters, follow the 
“ridge” in the matrix, and find the point 
which gives the maximum of the Madelung 
constant. If the crystal has more than two 
variable parameters, one constructs several 
two-dimensional matrices of Madelung 
constants for pairs of explicitly chosen pa- 
rameters. In these processes any pair of at- 
oms should have the separation equal to or 
larger than the respective critical distances. 

Calculation of the Madehmg Constants 

The Madelung constants were calculated 
using the method of Bertaut (22,13). As the 
ionic charge distribution, the linear func- 
tion f(r) = a@! - r) was taken (14). The 
Madelung energy is 

qj is the charge number of ionj, and e is the 
electronic charge. The Madelung constant, 
A, is then expressed by 

A = -2R * E(Madelung). (4) 

Calculations were performed on a FA- 
COM VP-100, and the correctness of the 
program was checked by comparing with 
the Madelung constants of Johnson and 
Templeton (15). Agreement was quite 
good; for example, for Ti02 @utile) with 
their values of a = 4.5929, c = 2.9591 A, 
and u = 0.3056, the calculation showed A = 
19.08027 by summing for h’s within the 
sphere of 4.115 A-’ in reciprocal space, and 
the value of Johnson and Templeton was 
19.0803. Another check was made by doing 
the calculation for CsCl with different de- 
scriptions of this crystal, i.e., cubic, tetrag- 
onal, rhombohedral, triclinic, monoclinic, 
and orthorhombic systems. Each of our 
values was well in accord with that of Van 
Go01 and Piken (16). The Madelung con- 
stants are 1.76252 (average of six of our val- 
ues), 1.7623 (average of the six values of 
Van Go01 and Piken), and 1.76267 (17). 

E(Madelung) = 
288?rR 2 
7 c lNd12 Atom Parameter Determination 

6 

x( 
(Y sin (Y + 2 cos (Y - 2)‘O 

for a Few Ionic Crystals 

do Applicability of the present method was 

- & 7 (qje)*, (1) 
examined for the following three cases cho- 
sen rather arbitrarily. 

where 

a = 2rhR (2) 

and 

F(h) = C (qje)exp(2&zr). (3) 
i 

Titanium dioxide (rutile) crystallizes in 
the tetragonal System, space group P42/ 
mnm (D$) with 2 = 2. In this crystal, 2Ti 
atoms are in 2(a) (0, 0,O) and (B, t, t), and 40 
in 4(f) (x, x, O), (X, X , O), (2 + t, x + t, f) 
and (x + 4, X + $, 4). 

In these equations, R is half of the shortest Abrahams and Bernstein (18) made a 
interatomic distance, V is the volume of the close examination of the crystal structure 
unit cell, Z is the number of molecules in by means of X-ray diffraction analysis. 
the unit cell, h is the magnitude of the vec- They gave a = 4.59366, c = 2.95868 A, and 
tor h(h, k, I) in reciprocal space, r is the x = 0.3051 using the isotropic temperature 
position vector of the atoms in the crystal, factor refinement, which are in good agree- 

1. Ti02 (Rude) 
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ment with the neutron diffraction results, 
viz. a = 4.5922, c = 2.9590 A, and x = 
0.3051(19). We use here the lattice parame- 
ters from the neutron diffraction analysis. 

The Madelung constants are given in Ta- 
ble I for several x values, and the variation 
of the constant is illustrated in Fig. 1. It is 
seen from the figure that the maximum of 
the Madelung constant was attained at x = 
0.3020. The x value accords with the dif- 
fraction results though our value is 0.0031 
smaller. 

As for the critical distances, no system- 
atic efforts to determine them have been 
exerted yet, but, as will be discussed later, 
the values may be regarded to be a little 
smaller than the sum of the crystal radii of 
Shannon (20). This is because the critical 
distances should reflect the very short 
range repulsive interactions and the crystal 
radii are the empirical equilibrium values. 
We take tentatively in this work rA + rB - 
0.1 A as the critical distance where rA and rB 
are the crystal radii of Shannon for ions A 
and B. 

FIG. 1. Variation of Madelung constant with atom 
parameter x of TiOr (rutile). 

TABLE I 

CHANGE OF MADELUNG CONSTANT, MADELUNG 
ENERGY, AND HALF THE SHORTEST INTERATOMIC 
DISTANCE AS A FUNCTION OF ATOM PARAMETER x 

FOR TiOr (RUTILE) 

Half the 
Atom shortest inter- Madelung 

parameter atomic distance Madelung energy 
X R 6% constant (kcal/mole) 

0.296 0.961164 18.78533 -3249.48 
0.298 0.967658 18.92392 -3251.49 
0.300 0.974153 19.06472 -3253.84 
0.302 0.980104 19.19705 -3256.53 
0.304 0.975856 19.13156 -3259.55 
0.306 0.971632 19.06825 -3262.88 
0.308 0.967435 19.00702 -3266.52 

The interatomic distances for this com- 
pound were calculated for the atom param- 
eter obtained by the electrostatic calcula- 
tions. Table II shows the distances of Ti-0 
and O-O. The Ti06 octahedra in t-utile con- 
sist of four planar equatorial Ti-0 bonds 
and two apical Ti-0 bonds normal to the 
plane. Our calculations resulted in almost 
the same apical and equatorial Ti-0 dis- 
tances of 1.961 and 1.960 A, respectively. 
On the other hand, the diffraction studies 
give 1.9800 - 1.981 and 1.9845 - 1.947 A. 
Because the crystal radii for Ti4+ (CN = 6) 
and 02- are 0.745 and 1.26 A (20), respec- 
tively, the critical distance amounts to 
1.905 A, which is smaller than any values 
above. Note that our x value and hence the 
Ti-0 distances have been obtained only 
from the lattice parameters of TiOz (rutile). 
The present electrostatic calculations do 
not show any effect of axial deformations. 
As for the reason that the apical Ti-0 dis- 
tance is longer than the equatorial distance 
by 0.0315 - 0.034 A in the diffraction anal- 
yses, Baur and Khan (21) claimed the exis- 
tence of significant (-20%) covalency in 
t-utile. Their results agree with those of 
Kingsbury (22) although he rather attached 
importance to polarization, but seem to 
contradict Wackman et al. (23) and Ladd 



DETERMINATION OF ATOM PARAMETERS 135 

TABLE II 

INTERATOMIC DISTANCES IN Ti02 (RUTILE) (A) 

Interatomic 
distance 

Sabine 
Abrahams and 

and Bernstein Howard Present 
(18) (19) work 

Ti-0 (apical) 1.9800 1.981 1.961 
Ti-0 (equatorial) 1.9485 1.947 1.960 

o-o 2.5363 2.531 2.572 
o-o 2.7780 2.778 2.773 
o-o 2.9587 2.959 2.959 

(24). The bond nature of this compound is 
not unambiguously resolved. 

It should be mentioned here that there 
exists no minimum of Madelung energy in 
Table I. The energy monotonously de- 
creases from -3249.49 for x = 0.296 to 
-3266.53 kcal/mole for x = 0.308. The phe- 
nomenon of this type sometimes occurs as 
a result of Eq. (4). Discussion of this sub- 
ject will be made in the next section. 

2. UCl, 

UC13 can be considered basically ionic. 
X-ray diffraction analysis (25) showed that 
this crystal is hexagonal with lattice param- 
eters a = 7.443 and c = 4.321 A. These are 
in good agreement with the recent refined 
values of a = 7.444 and c = 4.324 A (26). 
The space group is P6&n (C&J, 2 = 2, in 
which 2U are in 2(d) ? (5, i, 4) and 6Cl in 
6(h)?(x,y,a;y,x-y,&y-x,x,a>withx 
= 0.3009(4) and y = 0.3858(4) by neutron 
diffraction analysis (27). In this crystal, six 
and three chlorine atoms surround a ura- 
nium atom forming a tricapped trigonal 
prism, the distance between chlorine and 
uranium atoms being 2.931(3) (6~) and 
2.937(3) (3x) A, respectively (27). 

Table III indicates the change of the 
Madelung constant as a function of atom 
parameters x and y. (This is the two-dimen- 
sional matrix discussed earlier.) The errors 
of the constants will be less than lop5 by 
performing the calculations until h = 4.258 

TABLE III 

MADELUNG CONSTANT OF UC& AS A FUNCTION OF 
ATOM PARAMETERS x AND y 

Parameter 
x 

Parameter y 

0.383 0.385 0.387 0.389 0.391 

0.296 9.20166 
0.297 9.21323 
0.298 9.22494 9.21710 
0.299 9.23678 9.22865 
0.300 9.22086 9.24034 9.231% 
0.301 9.20322 9.25216 9.24349 
0.302 9.23606 9.25516 9.24625 
0.303 9.21822 9.266% 9.25776 
0.304 9.25067 9.26940 9.25998 
0.305 9.23265 9.28188 9.27146 
0.306 9.26472 9.28308 
0.307 9.24650 9.29484 
0.308 ., 9.27819 
0.309 9.25979 

A-‘. With the values in the table, the x pa- 
rameter which gives the maximal Madelung 
constant can be obtained graphically for 
each y parameter. An example is shown in 
Fig. 2 for y = 0.383 where the maximum of 
the Madelung constant, 9.2375, is attained 
at x = 0.29905. Results for they parameters 
from 0.383 to 0.391 are listed in Table IV. 

FIG. 2. Variation of Madelung constant with atom 
parameter x for a fixed parameter y = 0.383 of UC19. 
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TABLE IV 

ATOM PARAMETER x WHICH GIVES MAXIMAL 
MADELUNGCONSTANT,MAXIMALMADELUNG 

CONSTANT, AND U-Cl DISTANCE FOR SEVERALY 
VALUES OF UC& 

x for maximal Maximal U-Cl 
Parameter Madelung Madelung distance 

Y constant’ constant” (A) 

0.383 0.29905 9.2375 2.939 
0.385 0.30105 9.2529 2.933 
0.387 0.30305 9.2677 2.927 
0.389 0.30505 9.2818 2.921 
0.391 0.30705 9.2955 2.915 

n Graphically determined. 

The relation between the atom parameters 
x and y is represented in Fig. 3. The figure 
shows that x increases linearly with y. An- 
other feature from Table IV is that the max- 
imal Madelung constant increases with y in 
the range 0.383 5 y I 0.391. 

The interatomic distances were calcu- 
lated for pairs of atom parameters x and y. 
According to the result, the U-Cl distances 
of nine chlorine atoms around a uranium 
atom are all the same for each pair of atom 
parameters which give the maximal Made- 
lung constant, and the distance decreases 
with increasing y. The calculated values are 
listed in column 4 of Table IV. The varia- 
tion is shown in Fig. 3 as a straight line. 

We obtain the critical distance of the U- 
Cl bond in this compound to be 2.92 A with 
the crystal radii of U3+ and Cl-, 1.35 and 
1.67 A, respectively. Here, the corrected 
radius of U3+ to nine coordination from six 
coordination value of Shannon (20) was 
used by taking the difference in radii due to 
coordination number for trivalent lan- 
thanides, since the increase of coordination 
number causes a significant increase in 
crystal radii, especially for cations. 

From the above results, the conditions of 
this paper will be satisfied (first, at least for 
U-Cl distances) if we choose the x and y 
parameters corresponding to the U-Cl dis- 

tance of 2.92 A in Fig. 3. The values ob- 
tained are x = 0.3054 and y = 0.3894. The 
Madelung constant, Madelung energy, and 
half of the shortest interatomic distance of 
this compound for the above pair of atom 
parameters are 9.28396, - 1057.16 kcal/ 
mole, and 1.460115 A, respectively. The 
Cl-Cl distances of the crystal are 
3.315(2x), 3.410(2x), and 3.411(4x) A, 
which are all larger than the critical dis- 
tance (3.24 A) of Cl-Cl bond. The x and y 
parameters obtained by the present electro- 
static calculations are in good agreement 
with the values reported, although slightly 
larger. The differences in x and y from Tay- 
lor and Wilson (27) are 0.0045 and 0.0036, 
respectively, and from Schleid et a/. (26) 
0.0038 and 0.0028, respectively. 

3. /3-RbzGeFe 

The high-temperature form of rubidium 
fluorogermanate, P-RbzGeFh , is hexagonal, 
with a = 5.94 and c = 9.63 8, (28); the space 
group is P63mc (C&), and there are two for- 
mula units (Z = 2) per unit cell. The atom 
parameters are reported to be 

- 2.933 

0.383 0.38s a387 0.391 

FIG. 3. Variation of atom parameter x, and U-Cl 
distance with atom parameter y of UC&. 
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4, f, u(Rb1); %, f, u(Rb1) + An atom parameter pair of u(F1) and 
t with u(Rb1) = 0.89 u(Fl), and that of u(F2) and v(F2) were cho- 
0, 0, u(Rb2); 0, 0, u(Rb2) sen explicitly. First, the Madelung constant 
+ 4 with u(Rb2) = 0.61 was calculated with the reported values of 
with u(Ge) = 0.25 parameters (28). Calculations were then 
u(Fl), CW), VW); carried out by changing the parameters of 
u(Fl), 2u(Fl), u(F1); the u(F1) and v(F1) pair, which revealed 
2u(Fl), u(Fl), u(F1); that if the atom parameters are taken to 
u(Fl), u(Fl), u(F1) + f; yield the maximal Madelung constant, the 
u(Fl), 2u(Fl), u(F1) + ;; Ge-Fl (3x) distances are equal to the Ge- 
2u(Fl), u(Fl), u(F1) + $ F2 (3x) distances which are a function of 
with u(F1) = 0.18 and u(F2) and u(F2). Since there is only one 
u(F1) = 0.35 u(F1) parameter value which makes the 
with u(F2) = 0.49, u(F2) three Ge-Fl distances equal to the Ge-F2 
= 0.15 distances for a given value of u(F1) parame- 

Figure 4 shows a perspective view of this 
crystal structure. As seen from the figure, 
each germanium atom is coordinated by six 
fluorine atoms which form an octahedron, 
and each rubidium atom has 12 nearest- 
neighbor fluorine atoms. There are seven 
variable atom parameters in this structure, 
i.e., u(Rbl), u(Rb2), u(Ge), u(Fl), u(Fl), 
u(F2), and u(F2), but all the atoms have the 
variable parameters along the c axis. There- 
fore, one of these parameters can be arbi- 
trarily chosen (29). We take u(Ge) = 0.25 in 
order to be consistent with the literature 
values (28). 

ter, the empirical relation above was used 
to reduce the two variables. That is to say, 
u(F1) and u(F2) were determined as a func- 
tion of u(F1) and u(F2), respectively. 

Table V represents the Madelung con- 
stants for several pairs of u(F1) and u(F2) 
parameters for L = 1.88 A where L stands 
for the Ge-F distance. As in the case of 
UC13, one can obtain the u(F2) value which 
gives the maximal Madelung constant for 
each of the u(F1) values. This u(F2) and the 
maximal Madelung constant graphically de- 
termined are shown on the lower two lines 
of the table. According to the graphical 

FIG. 4. Perspective view of the hexagonal cell of /3-Rb2GeF6. Smallest spheres, Ge; middle-iized 
spheres, Rb; largest spheres, F. 
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TABLE V 

MADELUNG~ONSTANT OFR~~G~F~AS AFUNCTION 
OF PARAMETERS u(F1) AND u(F2) FOR L = 1.88 Aa 

Parameter 

u(F2) 

Parameter u(FI) 

0.1645 0.1685 0.1725 0.1765 

0.458 
0.462 
0.466 
0.470 
0.474 
0.478 

u(F2) which gives 
maximal Madelung 
constd 

Maximal Madelung 
constant* 

16.17559 16.17810 
16.18405 16.18913 16.182% 16.16752 
16.18634 16.19407 16.19043 16.17713 
16.18252 16.19316 16.19220 16.18125 
16.17273 16.18650 16.18845 16.18007 

16.17912 16.17354 

0.4656 0.4674 0.4694 0.4713 

16.1865 16.1945 16.1924 16.1816 

* Rubidium parameters are rr(Rbl) = 0.89 and rr(Rb2) = 0.61. L is the 
Ge-F distance. 

b Graphically determined. 

analysis of the results, the maximum of the 
maximal Madelung constants which should 
produce a continuous ridge in this two-di- 
mensional map is located at u(F1) = 0.1698 
which results in u(F2) = 0.4681, u(F1) = 
0.3371, and v(F2) = 0.1182. The corre- 
sponding Madelung constant is 16.1959. 

If we take as the critical distance the 0.1 
A smaller value than the crystal radius sum, 
the critical distances for Rb-F, Ge-F, and 
F-F are 2.95, 1.76, and 2.28 A, respec- 
tively, since the crystal radii of Rb’ (CN = 
12), Ge4+ (CN = 6), and F- are 1.86, 0.67, 
and 1.19 A, respectively (20). On calculat- 
ing the interatomic distances with the 
above atom parameters and with the litera- 
ture rubidium parameters, i.e., u(Rb1) = 
0.89 and u(Rb2) = 0.61, it was found that 
three Rbl-F2 and three Rb2-Fl distances 
were 2.598 and 2.799 A, respectively. 
These separations are less-than the critical 
distance of Rb-F (2.95 A) by 0.352 and 
0.151 A. The rubidium parameters which 
give 2.95 A were u(Rb1) = 0.8478 and 
u(Rb2) = 0.5903. Three remaining Rb2-Fl 
distances were 2.999 A with these parame- 
ter values. The Madelung constant was 
16.15796. This constant is smaller than the 
former one, which means that the rubidium 
parameters of 0.8478 and 0.5903 are those 

which bring about the maximum Madelung 
constant in agreement with the condition 2. 

The same procedure was carried out for 
L = I.92 A. The result is shown in Table 
VI. The parameter values obtained were 
u(F1) = 0.1652, u(F1) = 0.3365, u(F2) = 
0.4691, and u(F2) = 0.1132. The Madelung 
constant was 16.2190, which is larger than 
that for L = 1.88 A. Therefore, the crystal 
can be regarded as more stable with the 
Ge-F distance of 1.92 A in an electrostatic 
sense. However, calculation shows that it 
is impossible to have all Rb-F distances 
equal or larger than 2.95 A with L = 1.92 A. 
If we put u(Rbl) = 0.8434 and u(Rb2) = 
0.5861, the three Rbl-F2 and three Rb2-Fl 
distances increase to 2.95 A, but the re- 
maining three Rb2-Fl distances decrease 
to 2.944 A which is less than 2.95 A. Figure 
5 shows the change of the remaining Rb2- 
Fl distance with L. It is seen from the fig- 
ure that 2.95 A is attained at L = 1.916 A. 
The relation between u(F1) and L is indi- 
cated in Fig. 6, and that between u(F2) and 
L in Fig. 7. By graphical interpolation, the 
two parameters la(Fl) and u(F2) which cor- 
respond to L = 1.916 A are determined to 
be 0.1657 and 0.4961, respectively. The pa- 
rameters for P-Rb2GeF6 are finally u(Rb1) 

TABLE VI 

MADELUNG CONSTANT OF RbzGeF6 AS A FUNCTION 

OF PARAMETERS u(F1) AND u(F2) FOR L = 1.92w” 

Parameter 

uw-3 

Parameter u(F1) 

0.1605 0.1645 0.1685 0.1725 

0.458 
0.462 
0.466 
0.470 
0.474 
0.478 
0.482 

u(F2) which gives 
maximal Madelung 
constantb 

Maximal Madelung 
constant* 

16.19940 
16.20920 16.21094 16.20241 
16.21289 16.21734 16.21123 16.19595 
16.21066 16.21803 16.21450 16.20149 
16.20296 16.21348 16.21275 16.20225 

16.20341 16.20571 16.197% 
16.18860 

0.4666 0.4684 0.4708 0.4727 

16.2130 16.2186 16.2146 16.2025 

a Rubidium parameters are u(Rbl) = 0.89 and u(Rb2) = 0.61. L IS the 
Ge-F distance. 

b Graphically determined. 
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Ge-F distance L IA) 

FIG. 5. Variation of shorter Rb2-Fl distance with 
Ge-F distance of P-Rb2GeF6. 

= 0.8440, u(Rb2) = 0.5867, u(F1) = 0.1657, 
v(F1) = 0.3367, u(F2) = 0.4691, and u(F2) 
= 0.1138 together with one explicit parame- 
ter of u(Ge) = 0.25. These values compare 
well with literature values (28). The Made- 
lung constant and the Madelung energy for 
these parameters are 16.17170 and 

0.170 I- 

if 
= 0.165 

i 

g awl , - 

E 
ii 

0.155 

0.150 
1 I.64 1.66 1.92 1.96 

Ge-F distance L tA) 

FIG. 6. Relation between atom parameter u(F1) and 
Ge-F distance for P-RbZGeF6. 

I- 

u6=2l=u691 

/ 

L= 1.916 A 

0465 
1.64 1.66 1.92 1.96 

Ge-F diitance L IA, 

139 

0 

FIG. 7. Relation between atom parameter u(F2) and 
Ge-F distance for P-Rb2GeF6. 

-2806.59 kcal/mole, respectively. Inter- 
atomic distances are as follows: Rbl-F2 = 
2.950 (3x) and 3.007 (3x), Rbl-Fl = 2.971 
(6x), Rb2-Fl = 2.950 (6x), Rb2-F2 = 
2.998 (6x), Ge-Fl = 1.916 (3x), Ge-F2 = 
1.916 (3x), Fl-Fl (shortest) = 2.953 (2x), 
Fl-F2 (shortest) = 2.669 (2x), and F2-F2 
(shortest) = 2.419 (2x) A. 

Discussion 

For the present aim of determining vari- 
able atom parameters, we only need to pay 
attention to the energy components, which 
vary significantly with the structure-depen- 
dent factors, in the cohesive energy of the 
crystal. This implies that we are not con- 
cerned with determination of the precise 
cohesive energies of crystals. Such factors 
can be characterized by the lattice sums 
El/R” where the summation is to be taken 
for the whole atomic distances in the crys- 
tal. The related energy components other 
than the Madelung energy are the repulsive 
and van der Waals energies. 

The repulsive energy has mostly been as- 
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sumed to vary exponentially with the dis- 
tance of two closed-shell ions in keeping 
with quantum-mechanical results (17, 30). 
However, the inverse power form of Born 
and Land6 (32) will be used for ease of 
comparison. In this context, the repulsive 
contribution to the cohesive energies is ex- 
pressed as 

E(repulsive) = g 

where the parameters B and n can be deter- 
mined directly for each crystal from the 
equation of state and its volume derivative. 

It is known in general that the repulsive 
contribution is 10 - 15% of the total cohe- 
sive energy (32). Because the cohesive en- 
ergy is given by 

NAe2 
E(cohesive) = 7 (6) 

at equilibrium distance provided that the 
other smaller energy terms than the Made- 
lung and repulsive energies are neglected, 
the inverse power figure n is 9 - 10 from 
the equation above, where N is the number 
of ion pairs and R0 is the equilibrium dis- 
tance. The exponent n of the repulsive in- 
teraction is so much larger than n = 1 for 
Coulombic interaction that it is not unreal- 
istic to regard the repulsive forces between 
ions or atoms as very short ranged. That is 
to say, for our present purpose, no great 
problems will arise if the approximation 
that the repulsive interactions are only be- 
tween nearest-neighbor atoms is taken. In 
that case, we can consider that the interac- 
tions are not primarily affected by the 
structure of crystals and that they are zero, 
though the last approximation may be 
somewhat crude, if the atom-atom separa- 
tions are larger than some critical values. 

Nieuwpoort and Blasse (33) have shown 
that such critical distances could be esti- 
mated to be the sum of the atomic radius of 
a metal and the ionic radius of an anion, 

which are about 0.8 A larger than the crys- 
tal equilibrium distances. Our potentials for 
the repulsive interactions are ~0 inside our 
critical distances and zero over these. It is 
possible to take some constant values in- 
stead of zero, but this does not change the 
result since the effect is only to add some 
constant energy to the cohesive energies 
for any variable atom parameters. 

The van der Waals energy is composed of 
the dipole-dipole and dipole-quadrupole 
interactions, which can be written as the 
sum of the two-body energies (17) as 

E(van der Waals) = - $ - j$ (7) 

where the coefficients C and D are linear 
combinations of the van der Waals coeffi- 
cients for interactions of the various ion 
pairs weighted by appropriate lattice sums. 
Again, the van der Waals energies are char- 
acterized by far more short-ranged interac- 
tions than the Coulombic energies. Their 
contribution to the cohesive energies is 
small, of the order of several percent, un- 
less the component ions show large polariz- 
abilities. Bet-taut (34) has presented a 
straightforward method to calculate the van 
der Waals energy of crystals, and has pre- 
dicted the atom parameter difference be- 
tween the neutron and X-ray diffraction 
results for Ti02 (t-utile) to be 0.0123. How- 
ever, it was not confirmed by Sabine and 
Howard (19) in their neutron diffraction 
study. It seems that the effect of the van der 
Waals energies on crystals is still in a state 
of flux, and we did not calculate these ener- 
gies in this paper. 

It is an important fact that there exists no 
minimum in the Madelung energies of Ta- 
ble I although it has a maximum in the Ma- 
delung consrants. This is because R may 
change with atom parameters. As shown in 
Eq. (4), the Madelung energy is given by A 
divided by -2R. We recall that the Made- 
lung constant is a strictly geometrical factor 
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of the structure of ionic crystals without di- 
mension. This means that the Madelung 
constant indicates how negatively large the 
Madelung energy is for a given R. The facts 
that the Madelung constants show maxima 
and reflect the experimental atom parame- 
ters while the Madelung energies do not can 
be considered to represent that the variable 
atom parameters are set first as the geomet- 
rical positions which give the most negative 
Madelung energies and then “real” atomic 
separations are fixed under the circum- 
stances of repulsive interactions. Due to 
Eq. (4), crystals will take R values as small 
as possible for a given Madelung constant, 
but this condition is subordinate to that of 
maximum Madelung constant. 
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